Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 7675, 2022 12 12.
Article in English | MEDLINE | ID: covidwho-2160208

ABSTRACT

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Mice , Animals , Disease Models, Animal , Mice, Transgenic , Lung , Mesocricetus , Inflammation
2.
Int J Biol Sci ; 17(14): 3786-3794, 2021.
Article in English | MEDLINE | ID: covidwho-1417292

ABSTRACT

COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/therapeutic use , Virus Attachment/drug effects , Administration, Intranasal , Amino Acid Sequence , Animals , Binding Sites , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Mice, Inbred C57BL , Microbial Sensitivity Tests , Protein Domains , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/pharmacology , Vero Cells
3.
AI and IoT‐Based Intelligent Automation in Robotics ; 5(4):189-204, 2021.
Article in English | Wiley | ID: covidwho-1193053

ABSTRACT

Summary Day by day, COVID-19 cases are increasing all over the world. Without a proper vaccine to control the disease, the only solution so far is social distancing and identifying the disease at an early stage. In more than 80% of confirmed cases there are only mild symptoms, like fever;therefore, we have to check the body temperature of people in public places like shopping malls, hotels, airports, schools and universities, etc. In this chapter we propose contactless temperature (CT) measurement utilizing thermal (TS), RGB, and 3D sensors. We also propose a fever location camera (FLC) which gives high-quality estimates from up to 2 or 3 meters away. Using cutting-edge technology, the fever location framework (FLF) estimates the internal heat level of individuals in groups of three or four by checking and filtering their face temperatures. If a high temperature is identified, the framework sounds an alarm or cautioning message, which has propelled face recognition technology. The framework, which is based on the investigation of face temperature, guarantees high-quality estimations. Using facial recognition (FR) likewise limits false readings;for example, an individual carrying a hot beverage. Using a devoted programming stage, a signal can be set to inform us of unusual temperatures. It can precisely recognize the facial temperature (FT) of numerous individuals quickly, with an exactness of ≤ 0.3 °C. Temperature recognition range can be set with the ideal location of up to 3 meters in the framework highlighted by a bi-directional double-channel (infrared light + visible light) camera utilizing a heated sensor and low level interference signals. The production of biomolecules that require human-specific lipid environments is extremely useful for basic research and medical applications. In article number 2000154, Seong-Jun Kim, Jae-Sung Woo, Sangsu Bae, and co-workers integrate multiple proteins or virus antigens into defined transcriptional hotspots in the human genome via a homology-independent targeted insertion method using CRISPR nucleases. This system is similar to a production pipeline of biomolecules in a factory controlled by CRISPR.

4.
Advanced Biology ; 5(4):2170041, 2021.
Article in English | Wiley | ID: covidwho-1184324

ABSTRACT

The production of biomolecules that require human-specific lipid environments is extremely useful for basic research and medical applications. In article number 2000154, Seong-Jun Kim, Jae-Sung Woo, Sangsu Bae, and co-workers integrate multiple proteins or virus antigens into defined transcriptional hotspots in the human genome via a homology-independent targeted insertion method using CRISPR nucleases. This system is similar to a production pipeline of biomolecules in a factory controlled by CRISPR.

5.
J Microbiol Biotechnol ; 30(12): 1843-1853, 2020 Dec 28.
Article in English | MEDLINE | ID: covidwho-934537

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.


Subject(s)
Antiviral Agents/pharmacology , Drug Approval , Drug Repositioning , SARS-CoV-2/drug effects , Antiviral Agents/toxicity , Humans , United States , United States Food and Drug Administration
6.
J Microbiol Biotechnol ; 30(3): 313-324, 2020 Mar 28.
Article in English | MEDLINE | ID: covidwho-32941

ABSTRACT

Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections , Pandemics , Pneumonia, Viral , Viral Vaccines , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL